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ABSTRACT

Now days, deblurring plays a vital role in all ineagrocessing tasks. Blind image deblurring (BI2)h be solved
by imposing some form of regularization (prior kredge) on the unknown blur and original image. Heeeintroduce a
new version, in which both the optimization probtewith respect to the unknown image and with retsfpethe unknown
blur are solved by the alternating direction methédhultipliers (ADMM) — an optimization tool thduas recently sparked
much interest for solving inverse problems, nanuklg to this efficiency and less complexity. Thigagithm also gets
better results or realistic case of blind deblgnmith unknown boundary conditions. Experimentshvaynthetic and real

blurred images show the competitiveness of thegseg method, both in terms of speed and restorgtiatity.

KEYWORDS: Alternating Direction Method of Multipliers (ADMM),Blind Deblurring, Blind Deconvolution,
Non Blind Image Deconvolution (NBID)

1. INTRODUCTION

Blind image deblurring (BID) is an inverse problevhere the observed image is modeled as resultorg the
convolution with a blurring filter, possibly follosd by additive noise[1], and the goal is to estartadth the underlying
image and the blurring filter. Clearly, BID is aveeely ill-posed problem, for which there are ity many solution.
Furthermore, the convolution operator is itselfitgtly ill-conditioned, making the inverse problexrtremely sensitive to
inaccurate filter estimates and to the presenasoise. To deal with the ill-posed nature of BID,shmethods use prior
information on the image and the blurring filtelor€erning the blur, earlier methods typically impsdard constraints,
whereas more recent ones use regularization. Tinesieods are thus of wider applicability, e.g.,ie practically relevant
case of a generic motion blur, typically addresBgdencouraging sparsely of the blur filter estimathis paper builds

upon the method proposed in.

Which stands out for not using restrictions or tagmes on the blur (apart from a limited suppadoging able to
recover a wide variety of filters. Due to the uretatined nature of BID, direct minimization of thest functions typically

used for deconvolution may not yield the desireatglimage estimates [2][ 3].

In fact, these sharp estimates typically corresponibcal (not global) minima of these cost funnto Several
strategies have been devised to address this kmscie as the alternating estimation of the imagkthe blur filter, the use
of restrictions, normalization steps, and cardifitidlization. Recently, a normalized image pricasaproposed so that the
global minimum would not correspond to the bluri@age. Multi-resolution approaches, which avoid edatal minima,
can also be found by using continuation schemesyevthe regularizing parameter is gradually deetal® a Bayesian
frame-work, it has been claimed that a MAP estinwdt¢he blur filter (after marginalizing out the kmown image) is
preferable to a joint MAP estimate of the image tradfilter [3][4][5][6].
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Most blind and non-blind deblurring methods assymagodic boundary conditions (to allow using FFTsbad
convolutions), instead of the more realistic unknoloundary conditions (UBC) [7]. This incorrect @sption is a
problem in non-blind deblurring and becomes worsBID (although it has mostly been ignored), sitieefilter estimate
is affected by the inaccuracy of the cyclic modelsimple way to avoid the UBC problem is to use thdge taper”
function, which softens the boundaries of the dégdamages, reducing the effect of wrongly assurpergpdic boundary
conditions; this approach is used in, while [8] éoyp a more sophisticated version thereof [9]. Otherks on BID [10],
although not explicitly reporting it, adopt someastgy for dealing with the boundaries, since thmsent good results on
real blurred images.

In this paper, we improve up on the method of deblg. We fully embrace the UBC, without an increas
computational cost, due to the way in which we theealternating direction method of multipliers (MM) to solve the
minimizations required by that method. Using the M, we also manage to impose positivity on the ibhg filter,
reaching considerable speed and quality improvesnarer the original version. The paper is organa®dbllows: section
2 sets the scenario, by introducing the BID probleswiewing the method of, and the ADMM; sectioinBoduces the

proposed approach, and section 4 reports expe@inesilts.

2. BACKGROUND
2.1. Observation Model

n m n
Consider the linear observation model y=Ax+n, Whgrg R, xUR and NUR" are vectors containing the

pixels (lexico-graphically ordered) of the degradiesage, the (unknown) original image, and the adelitnoise,

respectively; A=HDOR™ , where H is the matrix representing the convohutiwith a blurring filter h.
For computational convenience, most methods asshismieonvolution to be cyclic/periodic, thus n=ndaH is a (block)

circulant matrix, which is diagonal zed by the déde Fourier transform (DFT). However, in real-lifee convolution is

not cyclic and to obtain annxn blurred image onestmAccess ta/ax\/E =(\/ﬁ+2|)x(\/ﬁ+2|) pixels of the

original image, assuming the blurring filter to baa (21+1)x(2l+1) support. In this case, the obagon operator A=MH

U R can be factored into the product of a cyclic cdation HD R with an masking matrix I\W{O’l} vm

excluding the boundary where the cyclic convoluiginvalid.
2. 2 Existing Method

The implementation of this rationale is based oasnees of spectral whiteness to assess the fitfigse current
estimates to the degradation model. Residual westeihas been used for a long time to assess nwmehay, namely in
modeling time series and dynamical systems [11}emmecent applications can be found in spectros¢dplyand signal

detection.

However, to the best of our knowledge, criteriadoben residual whitness have not been used beaforaadage
deconvolution / deblurring. Our criteria are partily suited to the BID method, where stopping abosing the
regularization parameter are one and the same.tfihg results reported in this paper, show thataodarge set of
synthetic experiments, the proposed criteria landrt average decrease of 0.15 dB in ISNR2, compireghat is
obtained by stopping the algorithm at the maxim@NR (which of course, cannot be done in practisdf eequires the

original image), outperforming in this sense bdtd DP and the measure of. We also show tests on icoages and on
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various real blurred images; although with thesages, no quantitative results can be reported,elievie the results can
be (subjectively) considered good. We show thatptugosed criteria are also suitable for adjustimg regularization
parameter and stopping criterion of NBID methodspérticular, we report experiments with two recalgbrithms, using

different blurs and noise variances. In this sdenasur approach is shown to be adequate, but doesoutperform
SURE-based methods.

Algorithm 1: Continuation-Based BID

1. set N" 1o the identity fitter, X =y
A=A,

and ' choosen<1.

2. Repeat

3. XN« argmin, C, (X,h")

" h” — argmin, C,(X",h)

5. A —al

6. Until stopping criterion is satisfied.

2. 3 The BID Method

Following [2] (but in [2] the filter was not impodeto have positive entries), the image X and therivig
operator H (equivalently, the filter h) are estiethby minimizing the cost function

1 m K
C,(X,h) = E||y— MHX| 2+ 2> (|F X[,) +¢s+(h),
i=1

(1)
m q
HereAiZ:l“(”I:i XHZ) =¢(X)
WheregS+ is the indicator function of the set S+,
ls+u)={00 uOs
o0 uds’ )

S+ is the set of filters with positive entries irgiwen support (this positivity constraint was moinsidered in,

A> Ois the regularization parameter, ar'?ljD R is the matrix that corresponds to four directiofsabel-type) edge

filters at pixel i, withq 0101 . As shown in [2], good results are obtained byimining (1) alternatingly with respect to
h and X, while slowly decreasing the regularizatimrameter" (Algorithm 1). The rationale behind this continioat

scheme is that, with Iargg, the initial image estimates are piece-wise smadgth sharp edges, which allows improving
the estimate of the filter h; this in turn will @ reducing the weight of the regularize, thus diieg a better image
estimate, and so on. In [2], image estimate _X alatained by gradient descent and the filter esBmdt by conjugate

gradient (CG). Here, we show how these two stepseamore efficiently computed by the ADMM.
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2.4 The ADMM

The ADMM [13][14] has recently emerged as an effitti tool to address several imaging inverse problem
[15][16] and is related to other methods, nameljt-8yegman (SB) and Douglas-Rachford. Recently, &#s used for
BID, under total variation and sparsely regulai@at17]; however, those methods do not consider realist case of

non-circular blurring. Consider the general uncaised minimization problem
J . .
Z0R" 53

Algorithm 2: ADMM

Algorithm 2: ADMM.

1. Set k=0, choose 4"’ = Uzz.r.‘":“:} , and
d, fori=1, .1,
Repeat
g 0 AT [#] 2 ()
3. ra e 2 (G (" +d)
=i

2

-

J o e PP
Zia ‘—[Zﬂ"""(G“')TG“'] 1"'.-;--1
s

5. Forj=ltoJdo

6. z{..-‘._l{":“" « prox_, (GYZ, - d_.-‘."r":.})
£

1. de” < ~(GZ ™)
§. end

9 ke k+l

10. yntil stopping criterion is satisfied.

9 Ry - R

G.00R. xd ) .
Where ~ () Ry are arbitrary matrices an

(3 (D
R" u<1)DR”1 u(J)DRpJZg (u™)

formulation is 3)

are functions. An equivalent constrained

() =)
Subjecttou =Gz

Where the u(j) are the splitting variables. The AMND solve (3) takes from the Algorithm 2, as shawij16].
The challenging steps are those in lines 4 andrg & involves the proximity operator (PO) of eag]); recall that the PO
of a function f, defined as

prox, (v) = argmin @2)v- X[+ f(X),

Has a closed form expression for several choicés@dncerning line 4, it was shown in [15,16] tkfaé¢ required
inversion can be efficiently obtained in severatesa of interest, namely using the FFT and/or faavelet/frame

transforms.
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3. ROPOSED ALGORITHM
We propose using ADMM to tackle each of the innanimizations in Algorithm 1 (lines 3 and 4), with
C,(X,h) . | _
as defined in (1). Of course, for g<1, the problsmmon-convex, thus we have no theoretical converge
guarantees; however, as shown below, the empperébrmance of the algorithm is very competitive.

3.1. Updating the Image Estimate

The image Estimate update problem of Algorithmiie(8) can be written in the unconstrained formatats

1 o !
C, 060 =y =MHX|2 + A3 (R X],)
i=1

(4)
And in constrained formulation (3) by letting J=m-&hd
(=g -
G F,,forj=1..m (5)
G™D =H , ®)
) (Y = Al P =
ut’) =Aut’l 2, forj =1,..m
g ") = AuV|, for] -
2
g(m+1) (u(m+1)) ziuy_ M u(m+l) 5
2 (8)

The key steps of the resulting instance of Algonith are (as mentioned above) those in lines 4 ahthé 4 can
be written a

Zew < K(H (D +d, )+

P F (W +d)),

=1

(m+1)

O = = ,m = _
Where we have sdf  ~— = H " T H gpqH = Prand

m T
K=(HH+u) F F)"
= ©

If the convolutions with the edge filters represehby the matrices',:i are performed with periodic boundary
conditions, K can be efficiently computed in the T D8omain (using the FFT), since both H and F acelsktirculant
matrices [15][16]

To implement line 6 of Algorithm 2, we need the tRO:
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A 1
prox ., (V) = argmxln;||X||2q +§Hv— X||22
=v-=shrink(v,A/ u,q),........ @0

For j=1....m, and (with | denoting an identity majrix

NS TN PR
proxg(m‘rl)/p(v) —argrr!(lnp”y Mx”Z +2||V x||2 _ pl +MTM)_1(MTy+p\/). (11)

The proximity operator in (11) can be easily comnutM TM is a binary diagonal matrix, with zeros

corresponding to the unobserved boundary pixetsMiTy is the extension oy U R‘tOR“ by zero-padding. Finally, “v-

shrink” in (10) is a vectorial shrinkage functiamhich can be shown (details are omitted) to berglwe

v —shrink(y,r,q) = {yshrink(l,7 }:qu_z,g)zf||y|‘2 #0

04f v, =0

o~ Min T| X|q : .
Where shrink(Zl ,q) = arg X12 Z-x 22+ has closed form solutions foﬂ{o,1/2,2/3,1,4/3,3/2,2} (in

some cases as functions of the roots of cubic aadrir equations[12]).

3.2 Updating the Blurestimate

The blur estimate update problem of Algorithm hélé4) can be written in unconstrained formulatien a

1
mh|n§||y— MXH|,” + ¢S+ (h)

=X,G, =|

G
And in constrained form(3), with J=2 , and

Where hD Ry is the vector containing the blurring filter elem (lexicographically ordered) an)é U R is

the square matrix representing the convolutionnadige X with the filter in h. The resulting instanck Algorithm 2

DXTX+ u()!

involves (in line 4) the inversion of the matr& which can be efficiently computed in the DFT

ro
domain, using the FFT. Concerning the two (J=2Xipnity operators in line 6, we have thil @4 has exactly the

same form as (11), WitH replacing’o . Finally, since the proximity operator of the iogfior of a convex set is imply the

orthogonal projection on that set [18]
PrOX ), 0 (V) = ProXs, (v) = Py +(v),..04)

Which consists in setting to zero any negativeiesiand those outside the given support?
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4. EXPERIMENTS

In all the experiments, we use q=1fl°, =0.5p=1/2, and the following setting for the two ADMMgalrithms: (a)

the image estimate (line 3 of Algorithm 1) is congalwith 20 iterations of the algorithm explainedsiubsection 3.1,

d =0, y =

s . (1 . . . . .
initialized with G"X (where X is the estimate from the previous outeraition of Algorithm 1),

u=0.5, ancp =2/]; (b) the filter estimate (line 4 Of Algorithm 19 computed with 15 iterations of the algorithm expdd

=0, y =

(1 (i)
in subsection 3.2, initialized Wiﬂg G'h (where h is the filter estimate from the previomster

@ 1u? ( ) _ N
iteration), =0.01, and =0.1; (c) all the ADMM penalty paramete él are updated using the empirical rule

described in [13]. Both the proposed method andrtathod of [2] (implemented in MATLAB and run on btel Core i3
CPU) were stopped at the best ISNR (improvememsignal to noise ratio), in the synthetic experinsemtr at the best
visual result, for the real images.

The proposed approach was compared against itstandg], in a set of 30 synthetic experiments witfo
benchmark images (Lena and Cameraman), f&@® ®lur kernels (see figure 1) at three noise IeVBSNRD {0, 40,
30} dB). Instead of periodic boundary conditiong extended the images with values equal to theesehpundary and
both methods were run assuming unknown boundasis fubsection 2.1). For most experiments, theogembmethod
led to considerably higher ISNR, while being mdrart three times faster; even higher speed-upsxgexed if the fixed
number of iterations is replaced by adequate stappiiteria. The average ISNR and processing timéegable 1 show
that the proposed method clearly outperforms tiselbse form [2].

Table 1: Comparison between the Baseline Method [2Ind Our ADMM Approach. The Results for Each BSNR
Value are Averages over the Five Blurring Filters ad Two Images (Lena and Cameraman)

ISNR(dB) Time(s)
BSNR(dB) [4]proposed| [4] proposed
o 5.83 8.87 249 69
40dB  4.95 6.65 131 55
30dB 3.83 5.01 110 46

Experiment 5, Condition Number: 67.1
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Y
Experiment 7, Condition Number: 234x10

Figure 1: Deblurred Images in Different Experiments Based on Three Criteria.
From Left to Right: Highest ISNRP-GSURE MAD, DP MAD, M RW

With their parameters manually adjusted for theuaily best result. Besides being considerably faste

our method attained the best restoration, yieldingmage with sharp edges and no significant after Figure 2 shows

results obtained with an actual photo out-of-foaasg the proposed approach and its ancestor m¢gho@ur method

attained a sharper image within one third of thecpssing time.

5. CONCLUSIONS AND ONGOING WORK

We have proposed a new algorithm for blind de cbrian, improve-ing over the recent method of irotways:

a significant speedup (by using the ADMM) and thdity to handle unknown boundary conditions (moealistic than

the usual periodic ones). Experiments with synthatid real blurred images show that our methodesfgpms several

state-of-art methods, both in terms of speed amstbration quality. Ongoing research aims at devetpmdequate

stopping criteria for the inner ADMM algorithms, agll as for the outer iterations, namely followiogr recent work in.
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